RESOLUTION OF NONLINEAR OPTIMIZATION PROBLEMS SUBJECT TO BIPOLAR MAX-MIN FUZZY RELATION EQUATION CONSTRAINTS USING GENETIC ALGORITHM

Authors

  • Ali Abbasi Molai School of Mathematics and Computer Sciences, Damghan University, Damghan, Iran
  • Hassan Dana Mazraeh School of Mathematics and Computer Sciences, Damghan University, Damghan, Iran
Abstract:

This paper studies the nonlinear optimization problems subject to bipolar max-min fuzzy relation equation constraints. The feasible solution set of the problems is non-convex, in a general case. Therefore, conventional nonlinear optimization methods cannot be ideal for resolution of such problems. Hence, a Genetic Algorithm (GA) is proposed to find their optimal solution. This algorithm uses the structure of the feasible domain of the problems and lower and upper bound of the feasible solution set to choose the initial population. The GA employs two different crossover operations: 1- N-points crossover and 2- Arithmetic crossover. We run the GA with two crossover operations for some test problems and compare their results and performance to each other. Also, their results are compared with the results of other authors' works.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

OPTIMIZATION OF LINEAR OBJECTIVE FUNCTION SUBJECT TO FUZZY RELATION INEQUALITIES CONSTRAINTS WITH MAX-AVERAGE COMPOSITION

In this paper, the finitely many constraints of a fuzzy relationinequalities problem are studied and the linear objective function on the regiondefined by a fuzzy max-average operator is optimized. A new simplificationtechnique which accelerates the resolution of the problem by removing thecomponents having no effect on the solution process is given together with analgorithm and a numerical exa...

full text

Optimization of linear objective function subject to Fuzzy relation inequalities constraints with max-product composition

In this paper, we study the finitely many constraints of the fuzzyrelation inequality problem and optimize the linear objectivefunction on the region defined by the fuzzy max-product operator.Simplification operations have been given to accelerate theresolution of the problem by removing the components having noeffect on the solution process. Also, an algorithm and somenumerical and applied exa...

full text

MULTI-OBJECTIVE OPTIMIZATION WITH PREEMPTIVE PRIORITY SUBJECT TO FUZZY RELATION EQUATION CONSTRAINTS

This paper studies a new multi-objective fuzzy optimization prob- lem. The objective function of this study has dierent levels. Therefore, a suitable optimized solution for this problem would be an optimized solution with preemptive priority. Since, the feasible domain is non-convex; the tra- ditional methods cannot be applied. We study this problem and determine some special structures related...

full text

optimization of linear objective function subject to fuzzy relation inequalities constraints with max-average composition

in this paper, the finitely many constraints of a fuzzy relationinequalities problem are studied and the linear objective function on the regiondefined by a fuzzy max-average operator is optimized. a new simplificationtechnique which accelerates the resolution of the problem by removing thecomponents having no effect on the solution process is given together with analgorithm and a numerical exa...

full text

Separable programming problems with the max-product fuzzy relation equation constraints

In this paper, the separable programming problem subject to Fuzzy Relation Equation (FRE) constraints is studied. It is decomposed to two subproblems with decreasing and increasing objective functions with the same constraints. They are solved by the maximum solution and one of minimal solutions of its feasible domain, respectively. Their combination produces the original optimal solution. The ...

full text

optimization of linear objective function subject to fuzzy relation inequalities constraints with max-product composition

in this paper, we study the finitely many constraints of the fuzzyrelation inequality problem and optimize the linear objectivefunction on the region defined by the fuzzy max-product operator.simplification operations have been given to accelerate theresolution of the problem by removing the components having noeffect on the solution process. also, an algorithm and somenumerical and applied exa...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue 2

pages  109- 131

publication date 2018-04-29

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023